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ABSTRACT
The two step filter is applied to process intersatellite radar
measurements to determine the motion of one satellite
relative to another in close elliptical orbits. This filter
breaks a nonlinear estimation problem into two state
vectors. The “first step” state is chosen so as to have a
linear measurement equation. This is nonlinearly related
to the “second step” state which describes the dynamics.
Two different forms are used. In one, the first step state is
the second step state vector augmented by the
measurement equation. In the other, the first step and
second step state vectors are of equal dimension. The two
step filter is compared against an iterated extended
Kalman filter and a Kalman filter using a change of
variables. Analytical differences between the two step
estimator and these conventional filters are highlighted.
Special concerns for initializing the first step state
covariance matrix and handling the possibility of
numerically rank deficient covariance matrices are
addressed.   Numerical simulations are performed which
show that the Two Step estimator produces a lower
estimation bias under two circumstances; large apriori
initial error; and small dimension observation vectors
which require a longer arc of measurements to generate
observability of the state.

1. INTRODUCTION
Several space missions have been proposed, are in

development, or are operational which require
coordination of  two or more satellites in a highly
elliptical orbit (e>0.7)1. Rendezvous and docking in a
geostationary transfer orbit, for the purposes of satellite
assembly and repair, has been considered in some
advanced systems studies  and has similar mission
requirements2.

The relative guidance and navigation for these missions
are characterized by nonlinear dynamics and frequent
measurement updates of  a small dimension observation
vector, nonlinearly related to those states. Conventional
estimation techniques applied to such problems include
the extended Kalman filter (EKF), iterated extended
Kalman filter (IEKF), second (and higher) order filters,
and changes of variables which make the observation
equation linear. All of these techniques are suboptimal in
that they do not exactly minimize the global least squares
cost function

J x x P x x

y h x R y h x

o
T

o o

k
k

N

k k
T

k k k k

= − − − − +

− −

−

=

−∑

1

2

1

2

1

1

1

( ( )) ( ( ))

( ( )) ( ( ))
 (1)

and therefore generate biases in the state estimate.

2. TWO STEP FILTER
The two step filter is proposed by Haupt, et. al,3 and
Kasdin, et. al., 4 as an improved recursive solution to the
nonlinear estimation problem. This filter is an exact
minimization of the least squares cost function for static
problems. In this filter, the measurement equation is
expressed as a linear function of “first step’’ states (y)
which are nonlinearly related to the “second step’’ states
(x) describing the dynamics. This will allow a separable
measurement equation.

h x H f xk o k o( ) ( )= (2)

to be written as a linear function of the first step states



defined as y f x= ( ) . The first step state vector has to

have a dimension equal to or larger than that of the second
step state vector so that the second step states are
observable.

In reference 3 this optimal static filter was extended to
produce a sub-optimal filter for dynamic problems. The
time update of the first step states is derived starting with
the identity:

y y f x f xk k k k k k+ + += + −1 1 1( ) ( )  (3)

The expected value of the first order expansion of this

expression evaluated at the k TH  and k ST+ 1  times
approximates the first step state and covariance update as
follows:

y y f x f xk k k k k k+ + += + −1 1 1( ) ( ) (4)
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in which the bar ( ) indicates an estimate of a vector and

(-) and  (+) identify the apriori and aposteriori conditions,
respectively.

A standard Kalman filter measurement update is used to
produce the aposteriori estimate of the first step states.
This, along with the aposteriori first step covariance
matrix, is used to update the second step states. When the
dimension of the first step state vector is larger than that
of the second step state vector, the second step state
update must be performed as a numerical minimization of
the least squares cost function.
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The two step filter algorithm is summarized as follows:
1. Perform a linear measurement update of the first step

state estimate ( yk ( )+ ) and covariance ( Pyk ( )+ )

based on the ith observation.
2. Compute the second step state estimate ( xk ( )+ ) by

iterative minimization of Jxk  (equation (6)). Update

the second step covariance ( Pxk ( )+ )

3. Propagate the second step state estimate and
covariance ( xk+ −1 ( ) and Pxk+ −1( ) ) forward to the

k ST+ 1 time.
4. Compute the time update of the first step state and

covariance ( yk+ −1 ( ) and Pyk+ −1( ) ) at the

k ST+ 1 time using equations (4) and  (5).

For more detail on the two step estimator, please consult
references 3 and 4.

2.1 COMPARISON WITH CHANGE OF
VARIABLES
Consider a special case of  the two step estimator in which
there are an equal number of first and second step states.
In such a situation, if the function y f xk k k= ( )  is

invertible, then the second step state estimate can be
solved for exactly by inverting this transformation:

x f yk k k( ) ( ( ))+ = +−1 .

It is interesting to compare the difference between this
estimator and a Kalman filter which uses a change of
variables at each time step to make the measurement
equation linear5. The measurement update and second step
state solution for both filters are identical.  The difference
between them lies in the first step covariance time update
of equation 5.  For the coordinate transformation filter, the
first step covariance update is approximated as a first
order expansion.
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Equation (5) for the two step filter, however, only makes a
first order approximation to the change in the first step
covariance matrix. Assuming the measurements are
closely spaced and that the first step covariance used to
initialize the filter is a good approximation to

E y y y y T{( )( ) }− −  then it is expected that the two

step estimator will perform better than a basic change of
variables would.  How well the change of variables
method does in comparison to the two step filter will
depend upon how close the first order approximation of
Py is to the actual first step state covariance.

2.2 ILL-CONDITIONED FIRST STEP
COVARIANCE MATRICES
Equation (5) contains the subtraction of two positive
semidefinite matrices and as such it is not always



guaranteed to generate a positive definite first step
covariance matrix. In fact, in many situations, at some
point this equation does produce a first step covariance
matrix with a very small eigenvalue.  Sometimes a small
negative eigenvalue results, probably because of
numerical reasons. A negative eigenvalue in a covariance
matrix is physically meaningless and sometimes causes
the second step minimization to fail or to diverge. One
example of this problem is shown in Figure 1.
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(c) Two−Step Filter with epsilon=1E−20 Added
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(b) Baseline Two−Step Filter (No Modifications)
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(a) Baseline Two−Step Filter (No Modifications)
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(d) Baseline Two−Step Filter 20 Points Manually Deleted

Figure 1 Occurrence of an Ill-Conditioned First Step
Covariance Matrix.

The plot in Figure 1 (a) shows the eigenvalues of the first
step covariance matrix for a two step filter processing
measurements of range rate (see section 3.3).  True
anomaly of the reference  vehicle ("primary" as defined in
section 3.1) is the independent variable. Near a true
anomaly of 1.1 one of these eigenvalues gets very small.
The plot in Figure 1 (b) of  the sign of the smallest
eigenvalue indicates that it does have negative values.

An analysis was done of the mathematical conditions for
the cause and location of the small eigenvalues6. The
details are beyond the scope of this paper and the
interested reader is referred to reference 6. Use of a U-D

covariance factorization of the filter does reduce the
effects of the problem, but does not eliminate it entirely.
This is because the factored form still contains one
diagonal block which is negative.

One suggested modification to the two step filter, to
alleviate this problem is the addition of a small, positive
diagonal matrix ( εI ) onto the right hand side of equation
(5).
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The effect of this modification is shown in Figure 1 (c)
which is a plot of the eigenvalues of the first step
covariance matrix for the same filter, except with a term
of ε = 1E-20 added as in equation 8. As  shown, this
prevents the eigenvalues from becoming negative.

Another possible modification is to skip processing
measurements near the location of this problem. This is
shown in Figure 1 (d) in which 20 points were manually
deleted near a true anomaly of 1.1. Again, this prevents
the smallest eigenvalue of  Py from becoming negative
and the filter  operates properly following this point.

The option of removing points for a real-time filter has the
disadvantages of requiring a reliable test for ill-
conditioned Py in addition to rejecting some amount of
“good” data. For a filter with an equal number of first and
second step states, however, this modification was found
to be more reliable than the addition of a “process noise”
term in equation (8).

2.4 INITIALIZATION
It is important that the first step state estimate and the first
step state covariance be initialized properly in order to
realize the full benefits of the two step filter. The initial
first step state and covariance are expressed as the
expected values

y E f x0 0 0= { ( )} (9)

and

P E y y y yy
T

0 0 0 0 0= − −{( )( ) } (10)

These expected values are functions only of the
corresponding second step state estimate and its
probability distribution  (Px and x). For a general



problem, equations (9) and (10) cannot be evaluated in
closed form. A Monte-Carlo method is used in this study
to compute these expected values by averaging a
simulated Gaussian-distributed ensemble of second step
states.

For the cases in which the initial state errors are assumed
to be Gaussian and un-correlated, it is also possible as
well as practical to numerically integrate the expected
value for each element of the first step state estimate and
covariance.
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Numerical integration is practical for all of the
formulations of the first step states described in section
3.3 because the velocity terms appear only linearly. This,
combined with the assumption of uncorrelated initial
conditions, allows factoring the expected values of the
velocity terms outside of the integral, leaving only three as
opposed to six numerical integrations.

It may not always be possible to assume that the six initial
states are uncoupled. For those cases in which there are
significant off diagonal elements of Px then a Monte Carlo
method using a coordinate transformation is
recommended.

Both methods were applied to the same problem for
validation and it is found that they generally agree with
each other to within 10% when 2E6 Monte Carlo samples
are used and the numerical integrations are performed
over intervals from -5σ to +5σ. Some very small elements
of Py, however did show larger relative errors in that
number of Monte Carlo simulations. These errors were
reduced when the Monte Carlo simulations were done
using  the scaled first step states defined in section 3.2.

3. RELATIVE NAVIGATION
3.1 BASIC ASSUMPTIONS
The two spacecraft are identified as the “primary” and the
“secondary” and all relative dynamics described in terms
of motion of the secondary with respect to the location of
the primary. The navigation sensors are located on the
primary vehicle and provide range, range rate, elevation
and azimuth of the secondary vehicle with respect to the
primary.

Three different coordinate systems are used to describe
this motion as shown in Figure 2. The Earth centered
inertial (ECI) system is defined at the center of mass of

the Earth with the X axis along the line of nodes of the
primary vehicle orbit and the Z axis in the direction of the
Earth’s angular momentum vector. The Y axis is in the
equatorial plane completing a right-handed system. The
right ascension of the ascending node of the primary is
therefore zero (Ω P ≡ 0 ). This reference frame is

assumed to be inertial in this study and it is used to
integrate the dynamics between measurements. A local
system is defined in which x is along the radius vector, z
is perpendicular to the orbit plane and y completes the
right hand triad which forces it to be oriented in the
direction of orbital motion. Raw measurement data from
the sensors are referenced to some body-fixed coordinate
frame, shown symbolically as {x’, y’, z’}.
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Figure 2 Coordinate System Definitions

Relative navigation is performed using only intersatellite
ranging measurements and estimating only relative states.
Solution of the complete navigation problem, however,
requires determination of not only the six relative states
but the orbit of the primary vehicle as well. Attitude
determination of the primary may or may not be a



required output, depending upon the application and the
control requirements on this vehicle. In any case, attitude
knowledge is necessary for the proper incorporation of the
elevation and azimuth measurements. In this study, perfect
attitude and orbit knowledge for the primary vehicle is
assumed. This assumption allows the elevation and
azimuth to be expressed in the local reference system as
opposed to the body reference. The relationship between
the relative navigation filter to be developed and the
external orbit and attitude determination filters is
illustrated in Figure 3.
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Figure 3 Relationship between Relative Navigation, Orbit
Determination, and Attitude Determination Filters

3.2 DYNAMIC MODEL
The relative navigation filter estimates a six element state
vector consisting of the differences in inertial position and
velocity between the primary vehicle and the secondary
vehicle in the ECI reference frame of Figure 2. The
relative position states are scaled by a reference
semimajor axis value and the relative velocities are scaled
by a reference circular velocity to reduce potential
numerical problems.  The corresponding components of
the second step states in all of the filters used in this study
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For this study it is assumed that the orbit of the target is
known to a high precision and the orbit elements of this
vehicle will be used as constant parameters of the filter.
The filter dynamic model further assumes that both the
primary and the secondary vehicles are in two-body orbits.

The primary orbit is therefore defined by the constant
Keplerian orbit elements; semimajor axis ( aP );

eccentricity ( eP ); argument of perigee (ϖ P ); and

inclination ( iP ). True anomaly of the primary ( fP ) is

used as the independent variable. This eliminates the need
to separately propagate the primary vehicle orbit

3.3 OBSERVATIONS AND FIRST STEP STATES
The first set of measurements considered are those of
range, rate-rate, elevation and azimuth. This set of
measurements makes the state estimate very observable
and the filter is less dependent upon the dynamic model to
incorporate measurements over a long arc of data. This set
of observations eliminates problems with weakly
observable out of plane errors for nearly coplanar orbits.
It will also prevent some possible ambiguities in which the
iterations converge to the wrong orbit. Elevation and
azimuth are expressed in the local reference frame as
illustrated in Figure 4.
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Figure 4 Definition of Azimuth and Elevation in the local
coordinate system.

With this set of measurements defined above, the
nonlinear observation equation is
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In one application, the first step state vector is formed by
augmenting the second step states with the measurement
equation.

[ ]f x h x x T( ) ( ),= (15)

To construct a two step filter with first and second step
states that have the same dimension, the following first
step state vector is defined:
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As a comparison to the previous filter which used a large-
dimension observation vector, a filter processing a single
scalar measurement of range rate is also considered. Both
a state augmented form of the first step state as well as the
first step state vector defined in equation (16) of equal
dimension to the second step state vector are used.

4.0 NUMERICAL SIMULATION
Two scenarios are simulated which best illustrate the
advantages of the two step estimator. The first scenario
uses a large dimension measurement vector giving good
observability of  the state vector, but the filter is initialized
with a large a priori error.

The second scenario uses the filter to process scalar
measurements and as such is more dependent upon the
filter  to make the state observable.  It is simulated with an
ensemble of initial conditions.

4.1 First Scenario: Large Dimension Observation
Vector and Large Apriori Error
This scenario processes measurements of range, range
rate, elevation and azimuth. For one application of the two
step filter, the first step states are defined by augmenting
the second step state vector with the measurement
equation as in equation (15).  Another two step filter is
derived using a first step state defined in equation (16) so
that it has an equal dimension to the second step state
vector.  A coordinate transformation filter is similarly
applied using those same first step states, in which the
nonlinear change of variables defined by equation (16) is
used at each time step. An IEKF is also simulated for
comparison.

The reference conditions and uncertainty are based on an
ESA study of rendezvous and docking in geostationary
transfer orbits in reference 2. The specific numbers are
listed in Table 1.

Table 1 First Scenario: Filter A Priori Orbit Elements.

Primary Semimajor Axis 24371 km
Eccentricity 0.7301

Argument of Perigee 180 deg.
Inclination 8 deg.

True Anomaly at Start
of Simulation

0 deg.

Secondary Xs-Xp 0.4 km
Ys-Yp -97.7 km
Zs-Zp -13.7 km
Us-Up 88.8 m/sec
Vs-Vp 0.7 m/sec
Ws-Wp 0.1 m/sec

Initially, the primary and secondary are assumed to lie in
the same orbit except for a separation in true anomaly.
The uncertainties stated in that study are derived from
predicted launch vehicle dispersions following a period of
ground-based tracking of the two vehicles independently

The simulations are run for 3200 seconds, processing
measurements once a second starting with the primary
vehicle at perigee. A value of ε = 1E-18 is added as in
equation (8) and this prevented any failures resulting from
ill-conditioned Py over the ensemble of cases ran in this
simulation. For the six state filter, however, this value of ε



does not completely prevent an ill conditioned Py from
causing an increase in error. It is found to be very difficult
to properly set ε for a filter with equal dimensioned states.
One possible reason for this is that, for a filter with an
equal number of first and second step states, an ill-
conditioned first step covariance would only occur for a
truly (numerically) rank deficient partial derivative matrix.
When such a near-singularity occurs, it is not expected
that simply adding a small positive diagonal matrix onto it
would improve its condition number. (If A is ill-
conditioned, then so is A I+ ε for small ε .) In the next
section, this problem is worse and it is necessary to skip
points in order to avoid severe numerical problems as a
result of poorly conditioned Py.

A total of 30 simulated trajectories were generated in
which each set of simulated noisy data was processed by
all four filters. The same tolerances are used for each of
the filters that require an iterative solution.  Iterations are
stopped when the change in state is less than

max( / )δx x E≤ −1 12 after a minimum of 10

iterations have occurred. A maximum of 500 iterations is
allowed, to prevent infinite loops in the event of divergent
solutions.

All of the estimators considered are expected to do well.
The two step filter, however, demonstrates better
performance when the set of simulated runs are started
from a large initial error. The initial error used in all of
these simulate trajectories is given in Table 2.  The initial
diagonals of the second step covariance matrix (derived
from the ESA study  in reference 2) is given in Table 3.
Elements of the first step covariance matrix were obtained
by Monte Carlo simulation.

Table 2 First Scenario: A Priori Errors

(In ECI coordinates as shown on Figure 2)
Xs-Xp Error 10 km 2.8 P11

Ys-Yp Error -6 km 0.5 P22

Zs-Zp Error 1 km 0.6 P33

Us-Up Error 20 m/sec 1.0 P44

Vs-Vp Error 8 m/sec 0.8 P55

Ws-Wp Error 1 m/sec 0.7 P66

This has a root-sum-square magnitude of 3.2 σ.

Numerical results showing the mean position errors for
the four different filters over the first 600 seconds of the
simulation are given in Figure 5. This figure also plots the

standard deviation of the mean σ / N 7 in which N is

the number of measurements used in the average and σ is
the standard error predicted by the filter for each
particular state element. Most of the two step filter
simulation state history lies within these bounds and is
thus considered to be "unbiased" within the statistical
significance of this simulation. Whereas these plots
demonstrate that all four filters converge for a large initial
error and perform rather well, the two step filter in both
forms is better at removing large initial errors. This shows
that the steady state covariance propagation and update of
the two step filter is approximately the same as that of a
Kalman filter operating on the linearized model.  This
assumption was important in the analysis of the location
of rank deficient  Py in reference 6, allowing examination
of the covariance propagation independent of the state
estimate.

Table 3 First Scenario: Second Step Covariance

(In ECI coordinates as shown on Figure 2)

PXX
1.3E7 m^2 PUU

442 m^2/sec^2

PYY
1.6E8 m^2 PVV

100 m^2/sec^2

PZZ
3.2E6 m^2 PWW

2 m^2/sec^2
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Figure 5  First Scenario: Mean State Error

Comparison of the respective curves in Figure 5
demonstrates that the two step filter provides a lower error
than the coordinate transformed filter using the same set
of states. The differences are most significant for the
velocity states. This can be explained by the fact that three
of the four observations; range, elevation, and azimuth are



direct measurements of position. Range rate is the only
direct measurement of velocity. The velocity state
estimate is therefore more dependent upon the filter to
propagate it from one measurement to the next.

The comparison between the predicted covariance and the
mean squared error for the filters is given in Figure 6.
Predicted covariance is indicated by the solid line for the
two step filter and the dotted line for the IEKF. That
figure confirms the position and velocity plots in Figure 5.
Again, note that the improvement in velocity error is
larger than that in position error.
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Figure 6 First Scenario: Mean Square Error

It can be concluded from these simulations that, when the
measurement set is large and available frequently the
advantage of the two step estimator is in the removal of
large initial errors which fall outside of the covariance
bounds assumed for the filter.

The mean execution times for the complete 3200 second
simulation of each filter are compared in Table 4.
Numbers in this table are all normalized with the ten state
two step filter. The lower numbers for the coordinate
transformation and the six state two step filter are
expected when one considers that in those filters the
second step states are obtained by a closed form equation

and no iteration is required. The higher numbers for the
IEKF are due to the fact that a U-D factored formulation
is used for that filter. That algorithm requires scalar
measurements 8. Hence each of the four observations must
be processed individually, requiring four times the number
of iterations as in the two step filter. Each iteration in the
IEKF involves fewer operations than each in the two-step
filter, however.

Table 4 Mean Execution Time for the First Scenario.

Two Step Filter 1 (defn.)
IEKF 1.51

Coordinate Change
Filter

0.30

Two Step Filter
with n=m=6

0.37

4.2 Second Scenario: Small Dimension Observation
With Ensemble of Apriori Error
In the second scenario only range rate measurements are
used.  For this case, an ensemble of initial errors are
generated by a Monte-Carlo method using the initial
second step state covariance and assuming that the second
step states are initially uncorrelated. Both forms of the two
step estimator; the state augmented one and the n m=
filter using equation (16). as well as the IEKF and
coordinate transformation filters are simulated.

The filter in this scenario will be more heavily relied upon
to combine the measurements and make the state
observable than the one in the first scenario.  The problem
of state observability is much worse for the example
mission in the first scenario in which both vehicles are in
the same orbital plane.  In that case the out of plane
motion is very weakly observable. Some form of angle
measurements is necessary for a robust navigation system
in that orbital configuration.

The objective at this time is to demonstrate the difference
in estimation accuracy between the two step filters and the
IEKF and coordinate transformation filters.  As such, an
example orbit case which includes some out of plane
motion as well as some radial motion is devised. This is
formed by adding  inclination and eccentricity differences
to the reference orbits in Table 1. A smaller initial
covariance is also used in these simulations. The scenario
was started at primary true anomaly of -60 deg. and each
simulation is run for 6000 seconds. A total of 40 Monte
Carlo simulations are performed. The initial states are
selected by adding randomly generated errors to the
reference values in Table 5. These errors are zero mean,
uncorrelated Gaussian random numbers with statistics



given by the covariance matrix terms  in Table 5. Again,
the Monte-Carlo integration method is used to generate
the apriori first step state estimate and covariance from the
data in Table 5.

Table 5 Second  Scenario: Second Step Covariance

(In ECI coordinates as shown on Figure 2)

PXX
1E6 m^2 PU U 17.6 m^2/sec^2

PY Y 1.7E7 m^2 PV V 1.4 m^2/sec^2

PZZ 3.2E5 m^2 PW W 0.03 m^2/sec^2

Figure 7 plots the mean error for these simulations, along
with the standard deviation of the mean. Figure 8 is a plot
of the mean squared error and the filter predicted
covariance.  None of  the ensemble of 40 Monte Carlo
runs diverge  When a larger initial covariance, comparable
in magnitude to that used in the range-rate-angles case is
used, there are divergent runs.
            

Figure 7 Second Scenario: Mean State Error

            

Figure 8 Second Scenario: Mean Square Error

For the case of equal dimensioned first and second step
states, the addition of a small εI to the first step state
covariance propagation in equation (8) is not always able
to mitigate the difficulties associated with rank deficiency
of the partial derivative matrix itself. The solution in this
simulation is to compute the rank of this matrix at each
time step using a tolerance of 1E - 3. If the rank dropped
at anytime then the next 20 seconds of measurements are
skipped.

The  state estimation error using the coordinate
transformation filter is comparable to that for the seven
state two step filter and both the coordinate change filter
and the six state filter have results which are very similar.
This appears to contradict the earlier analysis which
indicated that the two step filter with an equal
dimensioned first and second step state vector would
produce a better state estimate because it makes a smaller
approximation to the covariance update between the first
and second step states. For this specific  case, however,
the first step state covariance is much closer to the first
order approximation than what is  used in the first
scenario.  This is shown by comparing the norm of the
difference between the initial Py and the first order
approximation, divided element-wise by Py.
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The norm of this (scaled) matrix is 16 times larger for the
example in the first scenario than it is for the example in
the second scenario. Hence the error made in
approximating the first step covariance by the first order
expression is larger for the first scenario than it is for the
second.

The Monte Carlo simulations presented in this chapter
demonstrate that the two step filter provides a better mean
square state estimate than the IEKF and the coordinate
transformation filter under two circumstances.  The first is
when the initial error is very large as compared to the
expected state uncertainty and the second is with systems
that have a small dimension observation vector and as
such are dependent upon the filter combining
measurements over time to make the state observable.

5.0 CONCLUSIONS
The findings of this study indicate that the two step
estimator would be a viable on-board relative navigation
filter.  This filter offers better state estimation accuracy for
cases in which the initial state error exceeds its predicted
bounds as well as situations in which a small measurement



set is used.  The latter case is particularly interesting in
that this improvement in filtering may allow the use of
fewer and simpler navigation sensors thereby reducing
mission cost.  The processing time requirements for the
two step filter using an  iterative solution were comparable
to those of the IEKF and approximately 3 times longer
than those of the coordinate transformation based filter.
Special problems in using the two step estimator such as
initialization of  the first step covariance and the
possibility of numerically rank-deficient covariance
matrices were solved. Further study is needed, however,
into the robustness of this filter, especially the rank
deficiency problem.  One possible implementation is to
use the two step filter for the initial acquisition of the
target vehicle and then to switch to a more conventional
IEKF after the state error has decreased.
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